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I. Introduction

Numerical analysts see their task as the development and analysis of

methods for computing quantities which arise in science and engineering. Some

assume that any good algorithm will soon find a user. Who knows if that assump-

tion is warranted? In any case this essay will begin by taking a step back from

software to consider who wants eigenvalues and eigenvectors of sparse matrices

of large order. It is encouraging to see that some computing services are

automatically monitoring the use of programs in their Libraries (e.g. Sandia Labs

in Albuquerque). Such practices will help at least a few people assess the actual

usage of all those carefully written subroutines.

Our investigations though limited, all point to an important distinction

between users that goes a long way towards expla-.g the present state of

affairs in software development. That is the gist of Sections 3 and 4.

This essay may well be read by those who are not specialists in software for

eigenvalue calculations and so there is a section which tells the EISPACK story.

The very existence of this set of subroutines is intriguing and it continues to

influence the development of mathematical software. Our account is too brief to

do justice to its subject but it provides essential background mteriaL

In Sections 6, 7. 8 we discuss the programs which were readily available in

September 1982 and then, in Section 9 we describe some programs that are still

under development.

* " Terminology

It is vital to science that one not be more precise than is necessary for the

purpose in hand. In this essay words like small, large, and sparse play a key

role. Yet their meaning will be relative to the user's com puting system.

Wesay that an n xL matrixis suallif two n x n arrays cap be heldin the
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fast store, in addition to any programs that are needed, otherwise the matrix is

large This binary distinction should not be pressed too hard or it will crumble.

The purists say that a matrix is sparse if it has only a few nonzero elements in

each row. not more than 50 say. On this definition a matrix with 902 of its ele-

ments zero would not be sparse because (I/ 10)ftz> 50n for large enough

Our definition suggests that it is reasonable to use similarity transforma-

tions to help find the eigenvalues of small matrices. Our definition also suggests

that one should cherish the zero elements of sparse matrices. Where does that

Leave large. nearly full matrices? Answer:. with the chemists - see Section 4.

The exploitation of sparsity in the execution of triangular factorization has

given rise to a valuable and vigorous research area called sparse matrix technol-

ogy. The rViews of Duff describe it well. [Duff. 1982]. It turns out that this

technology is not directly relevant to eigenvalue problems. There are two

classes of methods: those that employ explicit nondiagonal similarity transfor-

mations and those that do not. That is all. If it is attractive to use explicit simi-

larity transformations then please se them. Our concern here is with the other

class, whatever the character of the matrix.

This is the place to mention that G.W. Stewart gave a concise review of

numerical methods for sparse eigenvatue problems in [Duff & Stewart, 1976].

That covers the background of most of the software we discuss here. Since then

there have beerf important refinements to the Lanczos algorithm. Both

Davidson's method and the ideas sketched in the section on recent develop-

ments are'of more recent vintage.

Z EW%C

EISPACK is an organized collection of some 40 FORTRAN subroutines which

AX* jjjijj '
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compute some or all eigenvalues of a given matrix with or without the

corresponding eigenvectors. This large number of subroutines reflects the

yearning for efficiency. EISPACK has special techniques for real matrices, for

symmetric matrices, for tridiagonal matrices (aV = 0 if k -jI> 1) . and for

upper Hessenberg matrices (a% = 0 if i -j > 1)

The first issue of EISPACK appeared in 1974. The package was distributed

by the code center of the Argonrie National Laboratory. Argcnne. Illinois, and the

indispensable EISPACK GUIDE was published by Springer-Varlag. New York. To

complete most eigenvalue calculations it is necessary to invoke more than one

subroutine. For example, a nonsymmetric matrix B might be first "balanced"

by a diagonal similarity transformation, B -. DBD-  :C ; next C is reduced to

Hessenberg form. C - PJ CP = -H with P orthogonal and then H is reduced

to triangular form T (to within working accuracy), H - Q8 HQ = :T with Q

orthogonal. The eigenvalues of B are found on the diagonal of T.

Such detailed knowledge of the process was more than some users wanted

to learn. To meet this criticism some members of the EISPACK team wrote an

interface called EISPAC which allowed the user to specify the type of matrix and

the quantities to be computed. The interface then chose the appropriate sub-

routines and called them with the right parameter values. Unfortunately EISPAC

was only available on IBM systems.

A second edition of EISPACXK appeared in 1977 and a third is scheduled for

early 1983. Each edition removed blemishes found in some subroutines and

added new programs. We enlarge on this topic further on.

What many users of EISPACK do not know is that it represented a coopera-

tive effort by most of the world's experts in matrix computations. It seems safe

to asert that rot one of the people involved in EISPACK. or its antecedents.

became rich in the process. What a contrast to the software produced for

. '~~-~ b
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not present, can have a strong effect on the time needed to execute a matrix

computation. Fortunately it was possible to express the algorithms so that they

would perform satisfactorily on all the major systems. This is the nature of work

in mathematical software.

The next aspect of EISPACK that should be remembered is the massive

effort at testing the programs, in an adversary manner, before their release.

About 15 computing groups in the U.S.A. and Canada agreed to install and test

the trial programs they received from Argonne. As bugs and blemishes were

uncovered there were several iterations on the programs.

A nasty thought must be stirring in the reader's mind. How can an algo-

rithm be published in Numerische Mathematik after careful refereeing, be sub-

ject to scrutiny and testing by Yrilkinson and Reinsch prior to inclusion in the

"-.i Handbook. be translated into FORIRAN by the EISPACK team with close attention

to detail, be tested by various sites charged with that duty, and yet retain a bug

or even a blemish? Either the people involved in this development are not truely

competent or there is more to the production of software for the mass market

than meets the eye. If the latter, then what precisely are the difficulties? We all

await a succinct description of the intellectual problems that would establish

mathematical software as a genuine subdiscipline of computer science.

Last, but not least, we should emphasize the effort expended by the team

on the documentation and uniform coding style. it is a mis'tke to speak of

"good" documentation because documentation which satisfies A may not be

suitable for B. It is reasonable to speak of documentation being suitable for a

given clas of users. The EISPACK GUIDE has intimidated some users but. at the

time It appeared. it glowed with virtue in comparison with other exainwe of

documentation. Moreover nothing on this scale had been attempted befhre by

the *xperts on mathematical sltware

71 ' .

4 . 0 ,• +,
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Inadvertently EISPACK has provided a common vocabulary (the names of its

subroutines) to eigenvalue hunters. EISPACK was a highly visible distillation of

what had been learnt by the matrix eigenvalue community during the previous

20 years. It was good for public relations. It predated UNPACK by 3 or 4 years

and yet most people consider the eigenvalue problem to be significantly more

difficult than the linear equations problem.

To numerical analysts EISPACK seemed to be the solution to the practical

eigenvalue problem. What else remained?

1. EISPACK routines are not fast enough for so-called real time computa-

tions where the output is needed in microseconds.

2. EISPACK manipulates matrices as conventional two dimensional arrays

or uses a conventional one dimensional representation of symmetric matrices.

Except for the tridiagonal and Hessenberg form. EISPACK does not try to exploit

zero elements in the original matrix. Moreover the stable similarity transforma-

tions used by most of the subroutines will quickly destroy any initial sparsity.

So the field is not dead by any means. As users become more sophisticated

they are finding more and more need for eigenvalues and eigenvectors. So usage

grows.

As the fast storage capacity of many computer systems continues to grow

so does the domain of EISPAC. Sound advice to a casual user is to use EISPACK

whenever possible, even if the matrix is 500 by 500 and sparse.
i

Who will then remain unsatisfied? The next section supplies an answer.

-. WHO WANTS DIGENVALU OF SPAM XAMlCES9?

EISPACK subroutines have been used quite extensively and it has been

assumed that the population of users Is so large and so diverse that there is lit-

U point in examining the market more closely. Nevertheless it would be nice to

77 . 4. 1 ..
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know how strong the demand is for programs which compute some egenvalues

and eigenvectors of a small nonsymmetric matrix.

Even less warranted is the natural assumption that there is a general need

for an extension of EISPACK to sparse - and large - matrices. Conversations with

a variety of users over several years have forced the author to the following

surprising explanation of the current state of affairs.

The market for eigenvalue programs can be divided into two quite different

camps: INTENSIVE users and SPORADIC users.

The intensive users already spend miions of dollars a year on the extrac-

tion of eigenvalues because spectral analysis is essential to their daily work.

They need efficiency and have already crafted their programs to exploit the spe-

1cial features of their tasks. General purpose programs with meticulous code

designed to cope with any difficulty which might arise are not cost effective for

this group. Of course, the more enlightened intensive users will collaborate with

experts as their special purpose software evolves to meet even more exacting

demands. Actually the class of intensive eigenvalue hunters also splits into two

quite distinct subclasses: those with small. dense matrices who need the output

in real time (microseconds) and those who generate larger and larger matrices

as they make their mathematical models more realistic. The "real time" users

may be driven to solve their problems :-izh hardware rather than software and

we will concentrate here on the large rr..: problem.

* I .The SPORADIC user has neither the incentive nor the inclination to study

matrix methods. The need for some eigenvalues arises and the user wants to

obtain them with minimal fuss. Reliability is more important than efficiency and

EISPACK is the answer to his prayers. We suggest that the number of sporadic

users whose matrices are too large for EISPACK is, and will remain, very low.

i,2
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The foregoing remarks do not lessen the value of developing good methods

for all sorts of large eigenvalue problems. On the other hand the situation

should make one hesitate before undertaking the painful chore of producing a

general purpose reliable package for most sparse eigenvalue problems.

4 INTENSVE UI

The author would welcome corrections and/or extensions to the folowing

list.

I. Structural Engieers

Most eigenvalue calculations arise at the heart of analyses of structures

subject to small vibrations. There is an n x n global stiffness matrix K and an

ni x ni global mass matrix M . Both are symmetric and real. K is positive

definite. The usual task is to find all the eigenvalues Xj in a given interval at

the left end of the spectrum (i.e. near 0), together with their eigenvectors zi,

I(K -, M)z, = 03=1,2,
The xi determine the shapes of the fundamental modes of vibration of the

structure and the N determine the associated natural frequencies 27r/ I/ . i

=12.....

The nonzero elements of K and M,! are integrals and more arithmetic

operations are needed to form Kand M than to compute a few eigenvalues.

*1 In 1978 one company paid 12,0U2 dollars to obtain 30 eigenvalue/vector

pairs for a problem with t = 12,000. This cost excludes program development.

A good finite element package was used with the technique called subspace

iteration for the eigenvalue extraction. Professor E. Wilson (Civil Engineering

Department, University of California, Berkeley) estimates that structural

engineers spent about 10 million dollars in 1978 on eigenvalue computations. A

typical problem today will have n =500 and 20 modes computed.
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Nevertheless, there is continued demand to analyze more complicated struc-

tures in greater detail. Problems with n > 10.000 and 400 modes have been

solved.

II. Qumtum Chemists

The method of Configuration Interaction (CI) has become the preferred

method for deducing observable properties of real and hypothetical molecules

from their detailed electronic stucture. The CI method approximates the solu-

tion of the clamped r.uclei Schroedinger equation by expanding it in terms of

orthogonal functions made out of products of so-called single and double elec-

tron spin orbitals. More details are given in [Shavitt. 1977] and [Davidson. 1982].

These papers show that interesting, difficult, special eigenvalue problems are

being solved quite independently of the numerical analysis community. Great

ingenuity goes into the calculation of the real symmetric matrix H (H for Hamil-

tonian ). The nonzero elements of H are multiple integrals and constitute only

10% of the positions. Unfortunately they are scattered over the matrix in a way

that precludes any simple structural template. Each eigenvector represents a

wave function and its eigenvalue is the energy of the associated state.

In these chemical computation. the determination of H requires 10 to

100 times more work then the extraction of the eigenvector belonging to the

smallest (i.e. most negative) eigenvalue. Perhaps 100,000 dollars are spent per

"* year in the U.S.A. on the actual eigenvalue/vector computation. Usually only

the smallest pair is required. A typical calculation has the order n = 10.000

but this activity is expected to increase sharply. During the summer of 1982 the

.. + ++ •.... +,+ ..+,:+o+ .... _ .+ +, + , . , . , , .. .
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ethylene molecule C1 H4 was analyzed in joint work at Cambridge University

and the University of California, Berkeley. For this problem

n = 1,046,758

This calculation demonstrated convincingly the need to include excited states in

the expansion. In other words the simpler models in Cl are not adequate for the

detail required in current investigations.

It is sad that most numerical analysts have never heard of the eigenvalue

methods invented by the chemists. These are described in [Davidson. 1982]. The

general techniques favored by the numerical ar alysts are too inefficient for seri-

ous (i.e. specialized) tasks.

I have not identifted a third group. In the 1960s there was considerable

1effort expended on the calculation of the criticality constant for nuclear reac-

tors but that activity has subsided. There is much interest in the vibration of

the piping systems in modern reactors but that work is part of structural

analysis. One candidate for the third position is circuit analysis and control

problems but at present that group seems to favor direct solution of their non-

lineac differential equations.

The intensive users have developed their own eigenvalue software. In fact

the structural engineers discovered the method of simultaneous iteration for

themselves but gave it a more descriptive name, subspace iteration. The

method itself Ls quite obv\ous and what counts is the implementation. It is sad

that the beautiful program R]TZIT, developed by H.. Rotishauser in 1968/69 and

published in the handbook of Wilkinson and Reinsch, had no influence on the

structural engineers working in the U.S.A., although in Britain the work of Jen-

nings did employ some of the techniques embodied in RrTZIT. By the time the

P~fI'= quality does creep into the finite element packages then subspace Itera-

tion will have been displaced by modern versions of the Lanczoe algorithm. The
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story is sad because numerical analysts shldAI justify their professional support

by communicating appropriate techniques to users. It is not sufficient to

develop, analyze and publish. Moreover, for reasons both good and bad. the

engineers will not read the numerical analysis journals and so the missionary

wc.xk will have to be done by word of mouth.

All the knowledge acquired by the specialists in matrix computations played

perhaps no role at all in 90% of the sparse, large eigenvalue extractions made in

1975 in the U.S.A.. i.e. in the calculations of the structural engineers and the

theoretical chemists. By 1985 the situation may have been reversed. Numerical

analysts such as P.S. Jensen at Lockheed (Palo Alto) and J. Lewis at Boeing Corn-

puter Services (Seattle) and their colleagues are deeply involved in ambitious

structural analyses and will adapt the best techniques they can find to produce

really effective software. Portability is nice, it--is particularly important for

packages aimed at general users, but Let us hope that it never becomes a comn-

mnandment. The glamorous work, at the leading edge of our capacities, will have

to exploit every feature that is special to the problem and the computer system.

This is the way of Mary (see the next paragraph if you are not familiar with this

expression).

Martha complained to Jesus that while she was busy preparing the meals

her sister Mary just listened to him. Jesus condoned Mary's behavior and. in

* some traditions, the way of Martha has stood for Lhe -x.)rthy, essential, but dull

chores (editorial work, perhaps?). In contrast the way of Mary is "where the

action is".

Those sporadic users for whom EISPACK is inadequate and who cannot

develop programs for themselves, seem to be in hiding. We presume they exist

and so the mundane but worthy task of providing robust, eay-to-use, portable

software for standard sparse problem types devolves on the matrix specialists.

7,I7
2k 4'. A -
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It is the way of Martha. We hope that the reader will forgive allusion to the New

Testament [Luke 10:38-42].

5. HOW TO EXPWIT SPARSrY.

It is possible to approximate an eigenvalue of a linear operator by "sam-

ping" at well chosen points in its domain. Thus the simple power method sam-

pies the action of a matrix A on the sequence of column vectors

z. Am. Az,. A3z, The sequence of Rayleigh quotients of these vectors con-

verges quite rapidly to the dominant eigenvalue of A. Recall that the Rayleigh

quotient of a vector v is vgAV/v v . Consequently there are methods that

need only be given a subroutine, call it OP. which returns Au for any given

vector v.

This is the only way in which A appears in the method. The structure and

, I sparsity of A can be exploited by the user in writing code for OP. In other

words, the buck is passed to the user He. or she, is in the best position to take

advantage of As characteristics to speed up the formation of Au. When v has

10,000 components one pays attention to this product. All the software we

describe below actually ignores sparsity completely.

This is in stark contrast to the direct solution of linear equations where a

number of clever devices are used to take advantage of zero elements. Some of

those sparse techniques may be used by the subprogram OP, but none of that

work appears explicitly in the eigenvalue codes. Nevertheless the development

of methods based on the user-supplied subprogram OP represents a beautiful

*division of labor the method is not obscured by details of A's structure.

V This is the place to mention a serious confusion that has arisen in the past

in the assessment of methods. We focus on symmetric matrices for the rest of

this section. At a certain level of abstraction the power method is identical to

I .7777,7.25
A- A,.*
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inverse iteration. One technique works with A , the other with A-' . Inverse

iteration performs the useful task of finding the eigenvalue nearest to 0 but

pays the significant price of factoring A (to LU) in order to form w = A- 1 v (by

solving Lu = v and Uc. = u) . If a sparse eigenvalue program is used to com-

pute eigenvalues of A it makes an ENORMOUS difference whether the subroutine

OP delivers Au or A-1u.

Subspace iteration finds eigenvalues close to a by factoring A - al and.

letting OP deliver (A - al)- . When a = 0 the eigenvalues near 0 are com-

puted first and quite rapidly.

The Lanczos algorithm is somewhat different. It produces eigenvalues at.

both ends of the spectrum of the linear operator represented by OP. the more

extreme ones emerging before the interior ones. Thus Lanczos offers the hope

of computing the eigenvalues of A nearest 0 without the pain of invoking somne

sparse factorization of A. In this sense Lanczos has been compared with Sub.

space Iteration. The performance depends quite strongly on the matrix but au

the order n grows (n > 100 say) Lanczos fares worse and worse and is soon

eclipsed by Subspace Iteration. Lanczos will have computed perhaps 50

unwanted eigenvaues near - for every eigenvalue near 0. This is because, in

most given problems, the larger eigenvalues are much better separated than

the small ones. (OP is approximating an unbounded operator.) Although Lanc-

zos is optimal in certain important re- :ts it is a hopeless task to compute the

smallest eigenvalue without either factoring A , or solving Av b iteratively,

or having a good approximation to the wanted eigenvector. This is certainly the

case when n > 1,000.

The solution is easy. Give Lanczos the same OP subroutine as Subspace

Iteration. Then the power of Lanczos reveals itself quickly. Both methods are

then working with (A - a)-' to find eilgenvaues near a.
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. SOFTWARE FOR THE MASE

By the time a matrix expert has seen his program appear in a referreed

journal he probably never wants to see it again. The program comes to dom-

inate its creator. Dr. R.C. Ward (ORNL) is well aware of the consequent difficulty

of getting good matrix programs into the hands of non-expert users. In conjunc-

tion with the Sparse Matrix Symposium of 1982 in Fairfield Glade, Ward. and his

colleagues at Oak Ridge, have started a public catalog of software for sparse

matrix problems, including eigenvalue extraction. This will help to focus the

production of good software.

A non-expert will still be annoyed at seeing perhaps six programs all

designed for the same task and all based on say the Lanczos algorithm. His

annoyance is forgiveable but unwarranted. He should be made to understand

that the sparse eigenvalue problem is still a research topic. The experts do not

jyet know the best way to implement the Lanczos algorithm, (to block or not to

block, to orthogonalize the Lanczos vectors a lot, a little, or not at all) or how to

handle secondary storage. Thus it is good that there are several rival programs

until a reasonable consensus is reached. Too many programs is better than

none at all For this reason there is no shame in the fact that the software avail-

able now is not up to EISPACK standards. In particular none of the codes has

been subjected to widespread testing in a variety of computer systems. It is

worth mentioning that Professc- Ruhe had some difficulty in transferring his

code STLM from the CDC 6600 or. which it was developd in Sweden to an identical

machine at Boeing. His code suddenly became much less efficient. Why? The

operating system was different! The good ship Portability may well founder on

the rock called Operating System.

All the programs mentioned below compute one or more eigenvalue/vector

pairs of the symmetric problem (A - =)e z 0, unless the contrary is stated.
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Brief

comments are given at the side. All programs are in FORTRAN. most in the ANSI

standard version of FORTRAN 68. AU are portable to some extent, some are com-

pletely portable. Between 30 and 60% of the lines are COMMENTS. A potential

user should consult Ward's catalog for more information on the programs men-

tioned below.

A. Prograns based on Lanczos

The modern versions of the Lanczos algorithm are not simple and most of

them are described in Chapter 13 of [Parlett. 1980]. A brief summary will be

given here, but please see the discussion in Section 8 for some important

details.

" Lanczos algorithms are iterative in nature. A starting vector (or block of

vectors) is chosen and at each step a new vector is added to the sequence. In

exact arithmetic these vectors are mutually orthogonal and of unit length. A

characteristic and pleasing feature is that only the two most recent vectors are

needed in the computation of the next one. In addition to these vectors the

Lanczos method builds up a symmetric tridiagonal matrix 7'. each step adds a

new row (and column) to T. Quite soon some eigenvalues of T begin to approx-

imate some eigenvalues of the operator hidden in OP. Almost always it is the

extreme eigenvalues which are we'l approximated.

V Sometimes an extreme eigenvalue is approximated to full working precision

(say 15 decimals) after only 30 Lanezos steps. It is rare that one can solve a

"" linear system correct to 4 deciamls after only 30 stpes of the conjugate gra-

dient algorithm (which is intimately related to the Lanczoe algrithm). unless an

excellent preconditloner is used. Thus it seems "easier" to find a few extreme

7eigenvalues and eigenvectors of A than to solve As a 6 1
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77e codes

All of the programs in Table A except for EA14, stand alone, they do not

invoke other packages explicitly. This feature turns out to be attractive to new

customers although it is irritating that EISPACK subroutines must be copied into

the program instead of being invoked.

The only program which can be obtained, independently of the author, from

the Argonne Code Center (now called NESC. the National Energy Software

Center) is Scott's LASO2. Documentation is available on an accompanying file.

This code has been used extensively at Oak Ridge National Laboratory on a

variety of structural analysis problems.

Documentation for the Cullum and Willoughby codes is obtainable in book

form (like the EISPACK Guide). Their programs use little or no reorthogonaliza-

tion of the Lanczos vectors but have developed ingenious ways to identify which

"I eigenvalues of the auxiliary tridiagonal matrix actually belong to the original

Imatrix. Their code is shorter than the rival codes.

The Swedish program uses blocks but does little reorthogonalization. Its

chief feature is a sophisticated mechanism for choosing the sifts a in the spec-

tral transform technique launched by Ruhe and described in Section 8. A careful

comparison of LAS02 with STLM would be very interesting for the small band of

specialists in matrix eigenvalue computations and would help in progress

Iowards a preferred implementation of the Lanczos algorithm.

The program EA14 is much shorter than the others because it does not use

blocks, does not do any reorthogonalization and finds eigenvalues only. and not

even their multiplicity. The user selects the interval to be explored. If the

interval happens to be empty the code will report that fact in reasonable time.

This is noteworthy because the code assumes that OP delivers A and so tri-

angular factorlzatlon is not available. Thus the standard technique for checking

a~ 071*so l



th numbe of eienL n an intervali not avilable. Ian Gladwell is incor-

also go into the NAG library.
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Table A

Symmetric Problems. Lanczos Based.

1Author Namea Lines Distributor Corwnw~ts

L J Cullum & LMAIN 2100 authors A - XJ only.

R. Willoughby LVMAIN (IBM) no orthogonalization.

J. Cullum & BLMAIN 1000 A - Al only.

F. Willoughby block limited reorthog.

D.S. Scott LAS02 3288 NESC block

selective orthog.

-1T. Ericsson STLM 8500 authors Shift and Invent

I& A. Rube (Sweden) strategy. (See Section)

no orthogonalization.

B.N. Parlett EA14 648 Harwell. All eigenvalues in

& L. Reid a given interval.

No eigenvectors.*1 No orthogonalization.
A - VI only.
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B.. Prora m ot basd on L sos.

There are a number of long. sophisticated. implementations of subspace

iteration buried in Finite Element packages. As such they are beyond the limits

of this survey. However the first three programs in Table B are available realize-

tions of subspace iteration.

This paragraph sketches the method. An Initial not of orthogonal vectors is

chosen. The number of vectors in the set is the dimension of the subspace. Call

it p. The proper choice of p is important and difficult. These vectors may be

considered as the columns of an n xp matrix XO. At step j the subroutine OP

s used to compute Y:= (A - vB) - 1 X - 1 . Next the Rayleigb-Ritz approxima-

tions tram the column space of Yare computed. These Ritz vectors go into the

columns of the matrix 0". They provide the best orthonormal set of approxi-

mate elgenvectors that can be obtained by taking linear combinations of the

columns of Y. After a while some of the columns of Xy provide excellent

approximations to some eigenvectors of the pair (AB). There are a number of

variants of this scheme and several clever tricks in the implementation. See

[Parlett, 1960, Chap. 14], [Jennings. 1961] or [Stewart. 1976] for more details.

The first three programs in Table B are realizations of subspace Iteration.

The Achilles heel of the technique is the selection of block size. The first two

programs are by numerical analysts and it would be intersting to see how they

compare with the codes imbedded in the finite element (FEM) packages men-

tioned in Section 2 It is Likely that they are shorter, cleaner, more robust, and

more efficient than their FEM rivals. On the other band they have not been Mie

tuned for structural analysis problems and that might make a difference.

The entry TRACUN is the product of recent research. It in based an the fact

that

h% J A- #),r]
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is minimized over all n x n matrices F when. and only when. the columns of

F are the eigenvectors of F belonging to the p eigenvalues closest to a. At

each step. the current F is adjusted in order to reduce the trace. We hope that

the authors will compare it with LAS02 or some similar rival technique.

LOPSI is the only program offered in Ward's catalog for the nonsymmetric

problem. The program has been published in TOMS (a severe test) and employs

subspace iteration.

One version of Davidson's method is realized in DIAG and was listed in the

catalog of the now defunct National Resource for Computation in Chemistry

(LBL. Berkeley). The general reader is warned that Davidson's method has been

developed for problems in Quantum Chemistry. The matrix must be strongly

diagonally dominant in order for its perturbation technique to be justified. When

all the diagonal elements of H are the same then Davidson's method reduces to
Lanczos. The difference is as follows. At step j the Rayleigh-Ritz technique is

used to produce the best: approximation J to the fundamental eigenvector

that can be obtained as a linear combination of the current basis vectors

b1 ..... bi . Let p(z) be the Rayleigh quotient, p(z) = z t Hz/zz. The residual

vector

rj: = (H -p(i))j

A. is proportional to the gradient vector Vp at v.

Perturbation theory now says that if vi is a good approximation then an

• * even better one is

a= (p(uj) - diag (-))-' rj

Davidson proposed to take as b +1 the normalized component of a orthogonal

trob, .... b1 .

~ A
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We make three observations. 1. The "interaction" matrix or projection

Bt HB is not tridiagonal but full. 2. The method aims at a particular

eigenvalue/vector pair. 3. When diag (H) h II then a1 is a multiple of r, and

Lanczos is recovered. This last assertion is not obvious. since v, iob , but it is

true.

Observation 2 shows that Davidson is not really a rival to Lanczos. The

method~s address different tasks. Moreover Davidson exploits the facm that good

starting vectors are available from chemistry.
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Table B
Symmetric Problems, other methods.

None of the programs stands alone (TOMS = published in
the Transactions on Mathematical Software of the ACM).

Author Nzme Lines Distr utor Comments

I. Duff EA12 427 Harwell A - XI only.
(England) RYTZIT inspired

P.J. Nikolai SIMITZ 550 IMSL A - X8
author RITZIT inspired

(in TOMS)

A. Jennings SI ? author A - X8
(Ireland) (in Int. Journ. Num.

Methods in Engineering)

J.A. Wisniewski TRACMN 586 authors A - AR
A.H. Sameh minimizes the trace

of sections of A - AB

( A. Jennings & LOPSI ? authors Subspace Iteration for
W. Stewart (Ireland) NONSYMMETRIC PROBLEM.

(in TOMS)

I E.R Davidson DIAG ? author perturbation technique
(Univ. of Wash. A - Vl
Dept. of Chem.)I

* 2
* I
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7. LANCZOS VERSUS SUBSPACE ITERATION

These two rival techniques are good and address the same task. A com-

parison of them is given in [Parlett, Nour-Omid, Taylor 1983] and the conclusion

there is that a modern, properly used version of the Lanczos algorithm should

be an order of magnitude (base 10) faster than a good subspace iteration pro-

gram on problems with n > 500. The larger the number of modes wanted the

greater the advantage of the Lanczos algorithm.

The fundamental theoretical advantage of the Lanczos is that it never dis-

cards any information whereas subspace iteration, at each step, overwrites a set

of approximate eigenvectors with a better set. What is surprising is that the

simple Lanczos algorithm needs only 5 or 8 n-vectors in the fast store at each

step. Moreover. it can find multiple eigenvalues if selective orthogonalization is

used.

There are enough poor implementations of Lanczos available to complicate

comparisons. The engineers who have devoted themselves to steady improve-

ments of subspace iteration are loyally defending the virtues of their codes. It

will be interesting to see what happens.

8. WHAT HAVE WE LEARNT SINCE 19789

Much could be said in answer to this question but two items suggest them-

selves.

' i1. The importance to new users of stand alone programs. This point was

made in Section 5.

2. The Spectral Transformation. The Lanczos algorithm requires that a

"'1i general linear problem

[K -.kf]z =O

be reduced to standard form. There are several ways to accomplish this and it

CIOI
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is vital, for large problems, to choose a good one. Although the facts given below

are elementary and have been known to the specialists in matrix computations

for a long time it is fair to say that until A. Ruhe pointed out their implications in

[Ericsson and Ruhe 1980] they were not given the proper emphasis. Of course.

subspace iteration has employed spectral transformations from the earliest

days.

Ruhe proposed that the original problem be rewritten in the standard form

[M i(K - aM) -I M - vl]y = 0

with y = Miz , and a a shift into the ir.erior of the interval which is to be

searched for eigenvalues A. This is quite different from the usual recommen-

, dation

[L-IKL-t - Xk]z = 0

where M = LL' and z =V.I
In the majority of large structural problems (with displacement formula-

* Ition) M is singular as well as diagonal, perhaps 1/3 of its diagonal elements are

* zero. The shift a is not fixed precisely so that there is no loss in assuming that

K - aM is nonsingular and can be factored in a stable manner without any row

and column interchanges. If K - aM = LDLt  then the product

.y = MMf (K - aM) - 1 MH u is formed in stages

v - .u, solve L w= v, s:: DLtx w, y -M3 x

If the factorization of K - aM is too costly then in principle (K - aM)y = MM u

could be solved by an iterative method. The point is that the subprogram OP in

Lanczos should return M11(K - oM)-'Mk u when given u . Sparse techniques

'" can be used in factoring K - aM . This reduction of the problem transforms the

spectrum according to
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=1

-a

and so the eigenvalues X, closest to a turn into the eigenvalues vi closest to

G. These are the ones which will appear first in a run of Lanczos algorithm.

For large n the reduction in the number of steps is so satisfactory that it will

offset the cost of factorization. Without the spectral transformation it will often

be necessary to take %n or more steps of the Lanczos algorithm in order to

a.3proximate the smallest 10 eigenvalues. Yet the Lanczos algorithm is most

eiective when used with fewer than 200 steps.

9 WORK IN PROGREM

It is surprising, at first, that the software reviewed above is so narrowly

fc,cussed. So it is natural that a few investigators are working to "fill the gaps".

to provide robust programs for all the requests that might conceivably be made

for eigenvaues of various types of large matrix.

Normal matrices enjoy a full set of orthonormal eigenvectors and most

methods designed for real symmetric matrices extend naturally to normal ones.

The most important subclass of normal but assymmetric matrices are those

that are skew and Ward has developed efficient software for them. as described

in [Ward, 1978].

Work on nonnormal sparse matrices is still in the experimental stage. The

experts are exploring the problem and there is no concensus on a preferred

technique. Y. Saad has adapted Arnoldi's method for sparse problems. This is
the natural extension of the Lanczos idea but subject to the constraint of using

orthonormal bases for the associated Krylov subspaces. The auxiliary matrix

generated in the course of the algorithm is Hessenberg (i.e hq = 0 if i > j + 1)

rather than triadiagonaL This is not a serious feature provided that fairly short

runs of Lanczos are uued, say 50 steps at most. Saad is experimenting with

*+
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variations on this method in which orthogonality is given up in return for a

banded structure in the Hessenberg matrix, see (Saad, 1980].

The Lanczos algorithm was generalized to the nonnormal case by Lanczos

himself, the procedure is obvious. Unfortunately it can breakdown and, in fact.

does so more often than not. In [Parlett and Taylor. 1981] it is shown how to

restore a large measure of stability in return for modest increase in complexity.

Some feature of the original, strict Lanczos algorithm must be discarded if the

breakdown is to be avoided. The new method looks ahead at every step and

decides whether to enlarge the Krylov subspace by one or two dimensions. The

auxiliary matrix is not quite triangular, there is a bulge every time the dimen-

sion increases by two. Column and row eigenvectors are given equal status and

condition numbers are automatically computed.

Axel Ruhe is experimenting with a two-sided Arnoldi process but this work is

at an early stage.

What impedes the production of pleasing software for nonnormal problems

is the potential ill-condition of the problem itself. Expectations have been set by

the symmetic case were the theory is most satisfactory. In the general case it is

difficult to generate useful error estimates, let alone error bounds, and this

affects the selection of stopping criterion. Numerical analysts would want to

deliver condition numbers along wnith the eigenvalues. but users do not want this

information, especially if it increases the cost by a noticeable amount.

We terminate this digression with a reminder that Jenning's program LOPSI

*has been published and is available to the public. LOPSI adapts subspace itera-

tion to the asymmetric case.

The most promising developments are close to the symmetric case. Many

problems in dynamics arise in the form

*A +~ M Kk =

!!~
:i i



where k is the time derivative of the vector field z(t). The damping matrix C

is such a pain that it is usually ignored. The program [Scott & Ward. 1982] looks

to the future and presents software for the associated quadratic eigenvalue

problem

(), 2 M + XC + K)u = 0

Their method is based on the Rayleigh quotient iteration. It does not take the

easy way out and reduce the qaadratic problem to a linear one of twice the size.

The Lanczos programs in Ward's catalog work very well in combination with

the spectral transformation d scussed in Section 8. That approach is not possi-

ble when the user cannot, or will not, allow the solution of linear systems of the

form

(K- crM)v = w

What can be done?

j Scott observed, in [Scot., 1981]. that when a is close to an eigenvalue

a + 6 of the pair (K.M) then the vector z belonging to the eigenvalue 6

closest to zero for the standari problem

(K- M - XI)z =0

is an approximate eigenvector of (KM) belonging to a. He formulates an

iterative method in which a standard sparse eigenvalue problem is solved at

each step for (6.z) and a + 6 converges monotonically to an eigenvalue of

* (K. M).

1O CLU-ON

The eigenvalue problem for large. sparse matrices is not yet understood
well eough, in all its computational ramificaUons, to permit the rapid deploy-

ment of impeccable software to the masses in the style set by IESPACK. Indeed

-. A
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it is doubtfull that the public is impatient for the arrival of this facility. Those

with an urgent need for such software prize efficiency above generality. They

have developed their own programs independently of the numerical analysts and

will continue to do so unless the matrix experts go to them and demonstrate

that they can be useful.

The wide variety of computing environments is going to play havoc with

naieve concepts of portabliy. "Transmission of thought" is one of thetwo basic

themes of science. The interesting and difficult task is to find the appropriate

level at which to transmit.

'+1

II
i~i .
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